D=3.5+80+-16t^2

Simple and best practice solution for D=3.5+80+-16t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for D=3.5+80+-16t^2 equation:



=3.5+80+-16D^2
We move all terms to the left:
-(3.5+80+-16D^2)=0
We use the square of the difference formula
-(3.5+80-16D^2)=0
We get rid of parentheses
16D^2-3.5-80=0
We add all the numbers together, and all the variables
16D^2-83.5=0
a = 16; b = 0; c = -83.5;
Δ = b2-4ac
Δ = 02-4·16·(-83.5)
Δ = 5344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5344}=\sqrt{16*334}=\sqrt{16}*\sqrt{334}=4\sqrt{334}$
$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{334}}{2*16}=\frac{0-4\sqrt{334}}{32} =-\frac{4\sqrt{334}}{32} =-\frac{\sqrt{334}}{8} $
$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{334}}{2*16}=\frac{0+4\sqrt{334}}{32} =\frac{4\sqrt{334}}{32} =\frac{\sqrt{334}}{8} $

See similar equations:

| 2.x=48 | | -4.5(x-8,9)=12.6 | | x/7=4=18 | | 2−5s=-6s | | x+49+x+49+90=180 | | 0=-1.5x+3.5 | | v-72/8=3 | | -2m+8=6m | | P=17+4d/9 | | 6x+8=3x+-19 | | 120+x+66=180 | | 40.06=5x | | 10+4q=-q | | 2(w-12)-2=6 | | (9x+16)/4=0 | | x/4+5=21 | | 5(x-5)=7(x-3) | | p-10/3=p/7 | | 42x+49=7(6x+7) | | 16-2x=3(1+8x) | | 8w^2+8w-72=0 | | 4(y-16)+5=13 | | 5.4t=1.8 | | x=(9x+16)/4 | | X^+10x-1=0 | | 6=a*4^0 | | -(m-5)=-1 | | x^2+30-81=0 | | 2.4=4.8s | | 24=a*4^2 | | 90+6x-12+3x-14=180 | | 24=a |

Equations solver categories